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Abstract The principal aim of this paper is to extend some recent results concerning
the contractibility of efficient sets and the Pareto reducibility in multicriteria explicitly
quasiconvex optimization problems to similar vector optimization problems involving
set-valued objective maps. To this end, an appropriate notion of generalized convexity
is introduced for set-valued maps taking values in a partially ordered real linear space,
which naturally extends the classical concept of explicit quasiconvexity of real-valued
functions. Actually, the class of so-called explicitly cone-quasiconvex set-valued maps
in particular contains the cone-convex set-valued maps, and it is contained in the class
of cone-quasiconvex set-valued maps.
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1 Introduction

Multiple criteria optimization problems involving explicitly quasiconvex (i.e., both
quasiconvex and semistrictly quasiconvex) objective functions have been intensively
studied in the literature, especially because these functions enjoy certain properties
of convex functions, which allowed the authors to extend many valuable results from
convex optimization to nonconvex (in particular fractional) optimization.

This work is motivated by two recent papers of Benoist (2003) and Popovici (2005).
The first one concerns the contractibility of the efficient outcome set in explicitly quasi-
convex multicriteria optimization, continuing a series of papers on the connectedness
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and contractibility of efficient sets, initiated by the early work of Schaible (1985), and
followed among others by Sun (1996), Daniilidis et al. (1997), Benoist (1998), and
Benoist and Popovici (2000). The second one deals with Pareto reducibility of mul-
ticriteria problems (i.e., the representation of the weakly efficient solution set as the
union of the sets of efficient solutions of all subproblems obtained from the original
one by selecting certain criteria), extending some previous results of Lowe et al.
(1984) and Malivert and Boissard (1994). The junction point between these two dis-
tinct research directions is the concept of simply shaded set, previously introduced
by Benoist and Popovici (2000), which is shown to be intimately related to explicit
quasiconvexity.

The principal aim of this paper is to extend the aforementioned results from
multicriteria explicitly quasiconvex optimization problems to similar optimization
problems involving set-valued objective maps. To this end, an appropriate notion of
generalized convexity is introduced for set-valued maps, which naturally extends the
concept of explicit quasiconvexity of real-valued functions.

We begin in Sect. 2 by presenting some general definitions and preliminary results
concerning cone-convex and cone-quasiconvex set-valued maps with values in a real
linear space, partially ordered by a relatively solid convex cone. In Sect. 3, we introduce
the notion of explicitly cone-quasiconvex set-valued map. Characterizations of this
notions and the relationship between this notion and the usual notions of cone-con-
vexity and cone-quasiconvexity are studied by keeping the same general framework
as in Sect. 2. Then, in Sect. 4, by restricting our attention on set-valued maps with
values in a finite dimensional Euclidean space, partially ordered by the standard
ordering cone, we derive from our main result (Theorem 4.1) sufficient conditions for
the Pareto reducibility, as well as for the contractibility of the efficient outcome set.

2 Cone-convexity and cone-quasiconvexity

Throughout this paper S will denote a nonempty convex subset of a real linear space
X. Recall that a real-valued function f : S → R is called:

• convex, if f ((1 − t)x + tx′) ≤ (1 − t)f (x) + tf (x′) for all x, x′ ∈ S and t ∈ [0, 1];
• quasiconvex, if f ((1 − t)x + tx′) ≤ max{f (x), f (x′)} for all x, x′ ∈ S and t ∈ [0, 1];
• semistrictly quasiconvex, if f ((1 − t)x + tx′) < max{f (x), f (x′)} for all x, x′ ∈ S with

f (x) �= f (x′) and t ∈ ]0, 1[;
• explicitly quasiconvex, if it is both quasiconvex and semistrictly quasiconvex.

For classical multicriteria optimization purposes, these notions have been natu-
rally adapted to functions with values in a finite-dimensional Euclidean space, as
follows: a function f = (f1, . . . , fn) : S → R

n (n ∈ N, n ≥ 2) is called component-
wise convex (resp., quasiconvex; semistrictly quasiconvex; explicitly quasiconvex) if
each of the component functions f1, . . . , fn is convex (resp., quasiconvex; semistric-
tly quasiconvex; explicitly quasiconvex). However, in general vector optimization,
where the image space of the objective function is an arbitrary partially ordered space
and no componentwise approach makes sense, the classical notions of convexity and
quasiconvexity have been extended for vector-valued functions and also for set-val-
ued maps in various ways. The reader can find some of them in the works of Borwein
(1977), Jahn (1986), Jeyakumar et al. (1993), Kuroiwa (1996), and Luc (1990). The aim
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of this Section is to study two of these notions. We start by recalling some preliminary
notions and results concerning the convex cones.

Let Y be a linear space over the field R of real numbers. As usual, given a subset A
of Y, we will denote by

cor A := {x ∈ A | ∀ y ∈ Y, ∃ λ ∈ R
∗+, x + [0, λ]·y ⊂ A},

icr A := {x ∈ A | ∀ y ∈ span(A − A), ∃ λ ∈ R
∗+, x + [0, λ]·y ⊂ A}

the algebraic interior and the relative algebraic interior of A, respectively. The set A
is called solid (resp., relatively solid) if cor A �= ∅ (resp. icr A �= ∅). Recall also that A
is said to be vectorially closed (in sense of Adán and Novo, 2003) if A = vclA, where
the so-called vectorial closure of A is given by

vcl A := {y ∈ Y | ∃ y′ ∈ Y, ∀ λ ∈ R
∗+, ∃ λ′ ∈ ]0, λ], y + λ′y′ ∈ A}

= {y ∈ Y | ∃ y′ ∈ Y, ∃ {λn}n∈N ⊂ R
∗+, λn → 0, y + λny′ ∈ A, ∀n ∈ N}.

Obviously, for any A ⊂ Y we have icr A ⊂ A ⊂ vcl A. By Proposition 3 in the paper
of Adán and Novo (2003) it follows that if A is convex then

∀ t ∈ [0, 1[ : (1 − t)·icr A + t·vcl A ⊂ icr A. (1)

In the sequel we will assume that the real linear space Y is partially ordered by a
relatively solid convex cone C, i.e., ∅ �= icr C ⊂ C = R+·C = C + C ⊂ Y. Actually we
endow the space Y with two binary relations, defined for any y, y′ ∈ Y by

y ≤C y′ :⇐⇒ y′ ∈ y + C and y <C y′ :⇐⇒ y′ ∈ y + icr C.

In the particular case where Y = R
n and C = R

n+ (n ∈ N), the binary relations ≤C
and <C will be simply denoted by ≤ and < (i.e., the usual component-wise order
relations).

Taking into account that C is a relatively solid convex cone and observing that

R
∗+·icr C = icr C and R+·vcl C = vcl C (2)

it can be easily deduced from (1) that

icr C + vcl C = icr C. (3)

The following preliminary result gives some useful representations of the relative
interior and the vectorial closure of the ordering cone.

Lemma 2.1 For every e ∈ icr C we have

icr C =
⋃

α>0

(αe + C) and vcl C =
⋂

β<0

(βe + icr C).

Proof Let e ∈ icr C. Then, according to (2) and (3), we have
⋃

α>0 (αe + C) ⊂
R

∗+·icr C + C ⊂ icr C + vcl C = icr C, hence
⋃

α>0 (αe + C) ⊂ icr C. In order to prove
the converse inclusion, let x ∈ icr C. Then, for y := −e ∈ span(C − C), there exists
λ > 0 such that x + λy ∈ C, i.e., x ∈ λe + C, which shows that x ∈ ⋃

α>0 (αe + C).
Hence the inclusion icr C ⊂ ⋃

α>0 (αe + C) also holds. Thus the first claimed equal-
ity is proven. Concerning the second one, firstly consider an arbitrary β < 0. Since
e ∈ icr C, by (2) and (3) it follows that (−β)e+vcl C ⊂ R

∗+·icr C +vcl C = icr C, hence
vcl C ⊂ βe + icr C. Consequently, we get vcl C ⊂ ⋂

β<0 (βe + icr C). In order to prove
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the converse inclusion, let x ∈ ⋂
β<0 (βe + icr C). Then, for every n ∈ N, we have

x ∈ (−1/n)e + icr C, hence x + 1
n e ∈ C. Since the sequence λn := 1

n > 0 converges to
0, it follows that x ∈ vcl C. We infer that

⋂
β<0 (βe + int C) ⊂ vcl C, which ends the

proof. ��
For any set-valued map F : S → 2Y , we denote by dom F := {x ∈ S | F(x) �= ∅},

grF := {(x, y) ∈ S × Y | y ∈ F(x)}, and epiCF := {(x, y) ∈ S × Y | y ∈ F(x) + C}, the
effective domain, the graph, and the epigraph of F, respectively. For every set A ⊂ Y,
we denote by F−1(A) := {x ∈ S | F(x) ∩ A �= ∅} the inverse image of A by F. A
vector-valued function f : S → Y is said to be a selection of F if f (x) ∈ F(x) for all
x ∈ S (in this case it is understood that S = dom F).

Following Borwein (1977), we say that a set-valued map F : S → 2Y is C-convex, if
for all x, x′ ∈ S and t ∈ [0, 1] we have

(1 − t)F(x) + tF(x′) ⊂ F((1 − t)x + tx′) + C,

which means that epiCF is convex. Note that the effective domain of a C-convex set-
valued map is convex. According to Kuroiwa (1996), the set-valued map F : S → 2Y

is called C-quasiconvex, if for all x, x′ ∈ S and t ∈ [0, 1] we have

(F(x) + C) ∩ (F(x′) + C) ⊂ F((1 − t)x + tx′) + C,

which means that the lower level set F−1(y−C) := {x ∈ S | F(x)∩ (y−C) �= ∅} = {x ∈
S | y ∈ F(x) + C} is convex, for each y ∈ Y. It is easily seen that F is C-quasiconvex
whenever it is C-convex, since the cone C is convex. Note also that if C is solid then
the effective domain of any C-quasiconvex set-valued map is convex, since in this case
Y = C − C (according to Lemma 1.13 in the monograph of Jahn, 1986), hence Y is
directed, i.e., for all x, y ∈ Y there exists z ∈ Y such that x ≤C z and y ≤C z.

A vector-valued function f : S → Y is said to be C-convex (resp., C-quasiconvex)
if the set-valued map F : S → 2Y , defined for all x ∈ S by F(x) := {f (x)}, is C-convex
(resp., C-quasiconvex). Thus, f is C-convex if and only if

f ((1 − t)x + tx′) ≤C (1 − t)f (x) + tf (x′)

for all x, x′ ∈ S and t ∈ [0, 1]. Similarly, f is C-quasiconvex if and only if for all x, x′ ∈ S,
t ∈ [0, 1] and y ∈ Y we have

f ((1 − t)x + tx′) ≤C y whenever f (x) ≤C y and f (x′) ≤C y.

Remark 2.1 Consider the particular case where Y = R
n and C = R

n+ and let f =
(f1, . . . , fn) : S → R

n be a vector function. It is easily seen that f is R
n+-convex if and

only if it is componentwise convex. Similarly, as shown by Luc (1989), f is R
n+-quasi-

convex if and only if it is componentwise quasiconvex. Note that this characterization
of C-quasiconvexity has been extended by using extreme directions of the nonnegative
polar of C by Luc (1989) and Benoist et al. (2003).

In what follows, it will be convenient to define, for every pair (x, x′) ∈ X × X, the
function �x,x′ : [0, 1] → X by

�x,x′(t) := (1 − t)x + tx′ for all t ∈ [0, 1].
Our first result gives a characterization of cone-convex maps.

Proposition 2.1 For any map F : S → 2Y the following assertions are equivalent:
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1 F is C-convex.
2 For all x, x′ ∈ S the composite map F ◦ �x,x′ : [0, 1] → 2Y is C-convex.
3 For all (x, v), (x′, v′) ∈ gr F the set-valued map F ◦ �x,x′ admits a selection ϕ such that

ϕ(t) ≤C (1 − t)v + tv′ for every t ∈ [0, 1].

Proof The implication 1◦ �⇒ 2◦ is obvious.
2◦ �⇒ 3◦. Suppose that 2◦ holds and let (x, v), (x′, v′) ∈ gr F. Then we have x, x′ ∈ S,

v ∈ F(x) = F ◦ �x,x′(0) and v′ ∈ F(x′) = F ◦ �x,x′(1). Since F ◦ �x,x′ is C-convex, it
follows that (1 − t)v + tv′ ∈ (1 − t)F ◦ �x,x′(0) + tF ◦ �x,x′(1) ⊂ F ◦ �x,x′(t) + C for all
t ∈ [0, 1]. Hence, for each t ∈ [0, 1] we can choose an element vt ∈ F ◦ �x,x′(t) such
that (1 − t)v + tv′ ∈ vt + C, i.e. vt ≤C (1 − t)v + tv′. Then, the function ϕ : [0, 1] → Y,
defined for all t ∈ [0, 1] by ϕ := vt, is a selection of F ◦�x,x′ , which satisfies the property
in demand.

3◦ �⇒ 1◦. Assume that 3◦ holds and let x, x′ ∈ S and t ∈ [0, 1]. For any y ∈ (1 −
t)F(x)+tF(x′) there exist v ∈ F(x) and v′ ∈ F(x′) such that y ∈ (1−t)v+tv′. Since (x, v),
(x′, v′) ∈ gr F, we infer by assumption 3◦ the existence of a selection ϕ : [0, 1] → Y
of F ◦ �x,x′ with ϕ(t) ≤C (1 − t)v + tv′. It follows that y ∈ (1 − t)v + tv′ ∈ ϕ(t) + C ⊂
F ◦�x,x′(t)+C = F((1− t)x+ tx′)+C. Hence (1− t)F(x)+ tF(x′) ⊂ F((1− t)x+ tx′)+C.
Thus F is C-convex. ��

The following result gives a characterization of cone-quasiconvex set-valued maps.
We omit its proof since it is similar to that of Proposition 3.2.

Proposition 2.2 For any set-valued map F : S → 2Y the following assertions are equiv-
alent:

1 F is C-quasiconvex.
2 For all x, x′ ∈ S the set-valued map F ◦ �x,x′ is C-quasiconvex.
3 For all (x, v), (x′, v′) ∈ gr F and y ∈ Y with v ≤C y, v′ ≤C y the set-valued map

F ◦ �x,x′ admits a selection ϕ such that ϕ(0) ≤C v, ϕ(1) ≤C v′ and ϕ(t) ≤C y for every
t ∈ ]0, 1[.

Corollary 2.1 Let F : S → 2Y be a set-valued map satisfying the property that for all
(x, v), (x′, v′) ∈ gr F the composite set-valued map F ◦ �x,x′ admits a C-convex (resp.,
C-quasiconvex) selection ϕ such that ϕ(0) ≤C v and ϕ(1) ≤C v′. Then F is C-convex
(resp., C-quasiconvex).

Proof It is easily seen that condition 3◦ in Proposition 2.1 (resp., Proposition 2.2)
holds. The conclusion immediately follows. ��

It is well-known that a function f : S → R is quasiconvex if, and only if, for each
y ∈ R the strict lower level set {x ∈ S | f (x) < y} is convex. The following result shows
that such a characterization also holds for set-valued maps, under the additional
assumption that C is vectorially closed.

Theorem 2.1 Let F : S → 2Y be a set-valued map.

(a) If F is C-quasiconvex, then F−1(y − icr C) is convex for all y ∈ Y.
(b) If C is vectorially closed and F−1(y − icr C) is convex for all y ∈ Y, then the

set-valued map F is C-quasiconvex.



108 J Glob Optim (2007) 38:103–118

Proof (a) Assume that F is C-quasiconvex and let y ∈ Y. By Lemma 2.1, we have

F−1(y − icr C) = F−1
(

y −
⋃

α>0

(αe + C)

)
=

⋃

α>0

F−1(y − αe − C).

The set-valued map F being C-quasiconvex, the level sets of type F−1(z − C), z ∈ Y,
are convex. In particular, F−1(y − αe − C) is convex for every α > 0. Taking into
account that F−1(y − α1e − C) ⊂ F−1(y − α2e − C) whenever α1 ≥ α2 > 0, we can
deduce that

⋃
α>0 F−1(y − αe − C), i.e. F−1(y − icr C), is convex.

(b) Assume that F−1(y − icr C) is convex for all y ∈ Y. Let z ∈ Y. Under the
hypothesis that C is vectorially closed, i.e., C = vcl C, it follows by Lemma 2.1 that

F−1(z − C) = F−1
(

z −
⋂

β<0

(βe + icr C)

)
=

⋂

β<0

F−1(z − βe − icr C).

Since for every β < 0 the set F−1(z − βe − icr C) is convex, it follows that the set
F−1(z − C) is convex. ��
Remark 2.2 As shown by the following example, the assumption on the vectorial
closeness of C is essential in Theorem 2.1(b), even if F is single-valued.

Example 2.1 Let S := [−1, 1] ⊂ X := R and let Y := R
2 be the two-dimensional

Euclidean space, partially ordered by the lexicographical cone

C := (R∗+ × R) ∪ ({0} × R+).

This convex cone having a nonempty topological interior, int C = R
∗+ × R, we have

icr C = int C and vcl C = cl C. Actually we have vcl C = R+ × R �= C, hence C is not
vectorially closed. Consider the function f : S → Y defined by f (x) = (0, 1 − x2) for
all x ∈ S. It is easily seen that f −1(y − icr C) is convex for all y ∈ Y. However, f is not
C-quasiconvex, since the level set f −1((0, 0) − C) = {−1, 1} is not convex.

3 Explicit cone-quasiconvexity

As in the previous section, in what follows Y will denote a real linear space, partially
ordered by a relatively solid convex cone C.

Definition 3.1 A set-valued map F :S → 2Y will be called explicitly C-quasiconvex if
for all x, x′ ∈ S and t ∈ ]0, 1[ the following inclusion holds:

(F(x) + C) ∩ (
F(x′) + icr C

) ⊂ F((1 − t)x + tx′) + icr C.

A function f : S → Y will be called explicitly C-quasiconvex if the set-valued map
F : S → 2Y defined for all x ∈ S by F(x) = {f (x)} is explicitly C-quasiconvex.

Remark 3.1 It is easily seen that a vector-valued function f : S → Y is explicitly
C-quasiconvex if and only if, for all y ∈ Y and x, x′ ∈ S such that f (x) ≤C y and
f (x′) <C y and every t ∈ ]0, 1[, we have f ((1 − t)x + tx′) <C y. In particular, it follows
that f possesses the following property:

f ((1 − t)x + tx′) <C f (x) whenever x, x′ ∈ S, f (x′) <C f (x), t ∈ ]0, 1[. (4)
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Note that property (4) characterizes semistrictly quasiconvex functions in the par-
ticular case when Y = R and C = R+. In general, however, a vector-valued function
f : S → Y which satisfies (4) is not necessarily explicitly C-quasiconvex, even if it is
C-quasiconvex, as shown by the following example.

Example 3.1 Let S := [−1, 1] ⊂ X := R and let Y := R
2 be the two-dimensional

Euclidean space, partially ordered by the standard ordering cone C := R
2+. In this case

we obviously have int C = icr C = R
∗+×R

∗+. Consider the function f = (f1, f2) : S → Y
defined for all x ∈ S by

f (x) = (min{0, −x}, x).

Since both functions f1 and f2 are quasiconvex in the usual sense, the function f is
C-quasiconvex according to Remark 2.1. Moreover, property (4) trivially holds, since
there are no x, x′ in S such that f (x′) <C f (x). However, the function f is not explicitly
C-quasiconvex, since (f (−1) + C) ∩ (f (1) + icr C) �⊂ f (0) + icr C.

The following result shows that, by analogy to cone-quasiconvex maps, explicitly
cone-quasiconvex maps can also be characterized in terms of (large and strict) lower
level sets.

Proposition 3.1 A set-valued map F : S → 2Y is explicitly C-quasiconvex if and only
if, for all y ∈ Y and (x, x′) ∈ F−1(y − C) × F−1(y − icr C), we have

(1 − t)x + tx′ ∈ F−1(y − icr C) for every t ∈ ]0, 1[. (5)

Proof Assume that F is explicitly C-quasiconvex. Consider some arbitrary y ∈ Y and
(x, x′) ∈ F−1(y−C)×F−1(y− icr C). Then y ∈ (F(x) + C)∩(

F(x′) + icr C
)
. By explicit

C-quasiconvexity of F it follows that y ∈ F((1− t)x+ tx′)+ icr C for all t ∈ ]0, 1[, which
means that (5) holds.

Conversely, suppose that (5) holds for all y ∈ Y and (x, x′) ∈ F−1(y − C)× F−1(y −
icr C). Let x, x′ ∈ S and t ∈ ]0, 1[. For any y ∈ (F(x) + C) ∩ (

F(x′) + icr C
)

we have
(x, x′) ∈ F−1(y − C) × F−1(y − icr C). By assumption (5) it follows that (1 − t)x + tx′ ∈
F−1(y − icr C), i.e. y ∈ F((1 − t)x + tx′) + icr C. Thus F is explicitly C-quasiconvex.

��
The next result gives another characterization of explicitly C-quasiconvex maps,

similar to Propositions 2.1 and 2.2.

Proposition 3.2 For any set-valued map F : S → 2Y the following assertions are equiv-
alent:

1◦ F is explicitly C-quasiconvex.
2◦ For all x, x′ ∈ S the set-valued map F ◦ �x,x′ is explicitly C-quasiconvex.
3◦ For all (x, v), (x′, v′) ∈ gr F and y ∈ Y with v ≤C y, v′ <C y, the set-valued map

F ◦ �x,x′ admits a selection ϕ such that ϕ(0) ≤C v, ϕ(1) ≤C v′ and ϕ(t) <C y for
every t ∈ ]0, 1[.

Proof 1◦ �⇒ 2◦. Assume that F is explicitly C-quasiconvex and let x, x′ ∈ S. For
all t, t′ ∈ [0, 1] and s ∈ ]0, 1[ we have

(
F ◦ �x,x′(t) + C

) ∩ (
F ◦ �x,x′(t′) + icr C

) =(
F(�x,x′(t)) + C

) ∩ (
F(�x,x′(t′)) + icr C

) ⊂ F((1 − s)�x,x′(t) + s�x,x′(t′)) + icr C = F(�x,x′
((1 − s)t + st′)) + icr C = F ◦ �x,x′((1 − s)t + st′) + icr C. Thus F ◦ �x,x′ is explicitly
C-quasiconvex.



110 J Glob Optim (2007) 38:103–118

2◦ �⇒ 3◦. Suppose that 2◦ holds. Let (x, v), (x′, v′) ∈ gr F and y ∈ Y such that
v ≤C y, v′ <C y. Then x, x′ ∈ S, v ∈ F(x) = F ◦ �x,x′(0), v′ ∈ F(x′) = F ◦ �x,x′(1) and
y ∈ (v+C)∩(v′ + icr C), hence y ∈ (F ◦�x,x′(0)+C)∩(F ◦�x,x′(1)+ icr C). Since F ◦�x,x′
is explicitly C-quasiconvex, it follows that y ∈ F ◦�x,x′(t)+ icr C for all t ∈ ]0, 1[. Hence,
for each t ∈ ]0, 1[ we can choose an element vt ∈ F ◦ �x,x′(t) such that y ∈ vt + icr C. It
is easily seen that a selection ϕ : [0, 1] → Y of F ◦�x,x′ satisfying the desired properties
in 3◦ can be defined by ϕ(0) := v, ϕ(1) := v′ and ϕ(t) := vt for all t ∈ ]0, 1[.

3◦ �⇒ 1◦. Assume that 3◦ holds and let x, x′ ∈ S and t ∈ ]0, 1[. For any y ∈
(F(x) + C)∩ (

F(x′) + icr C
)

there exist v ∈ F(x) and v′ ∈ F(x′) such that y ∈ (v + C)∩(
v′ + icr C

)
. Then we have (x, v), (x′, v′) ∈ gr F, v ≤C y, and v′ <C y. By assumption 3◦

we infer the existence of a selection ϕ : [0, 1] → Y of F◦�x,x′ such that ϕ(t) <C y. It fol-
lows that y ∈ ϕ(t)+icr C ⊂ F◦�x,x′(t)+icr C = F((1−t)x+tx′)+icr C. Thus (F(x) + C)∩(
F(x′) + icr C

) ⊂ F((1−t)x+tx′)+icr C. Consequently, F is explicitly C-quasiconvex. ��
Corollary 3.1 Let F : S → 2Y be a set-valued map satisfying the property that for all
(x, v), (x′, v′) ∈ gr F the set-valued map F ◦ �x,x′ admits an explicitly C-quasiconvex
selection ϕ such that ϕ(0) ≤C v and ϕ(1) ≤C v′, then F is explicitly C-quasiconvex.

Proof We just have to prove that condition 3◦ in Proposition 3.2 holds. Let (x, v),
(x′, v′) ∈ gr F and y ∈ Y with v ≤C y, v′ <C y. By hypothesis, there exists an explicitly
C-quasiconvex selection ϕ of F ◦ �x,x′ such that ϕ(0) ≤C v and ϕ(1) ≤C v′. Then
we have ϕ(0) ≤C y and ϕ(1) <C y. By explicit C-quasiconvexity of ϕ it follows that
ϕ(t) <C y for every t ∈ ]0, 1[. Thus ϕ satisfies the desired property in 3◦. ��

The relationship between explicit cone-quasiconvexity, cone-convexity, and cone-
quasiconvexity is emphasized by the following results.

Proposition 3.3 Every C-convex set-valued map is explicitly C-quasiconvex.

Proof Let F : S → 2Y be a C-convex set-valued map. Let x, x′ ∈ S and t ∈ ]0, 1[.
By C-convexity of F and by recalling the properties (2) and (3), we infer that, for all
y ∈ (F(x) + C) ∩ (

F(x′) + icr C
)
,

y = (1 − t)y + ty ∈ (1 − t) (F(x) + C) + t
(
F(x′) + icr C

)

⊂ (1 − t)F(x) + tF(x′) + C + icr C

⊂ F((1 − t)x + tx′) + icr C.

Hence (F(x) + C) ∩ (
F(x′) + icr C

) ⊂ F((1 − t)x + tx′) + icr C. Thus F is explicitly
C-quasiconvex. ��
Proposition 3.4 If C is vectorially closed, then every explicitly C-quasiconvex set-val-
ued map is C-quasiconvex.

Proof Let F : S → 2Y be an explicitly C-quasiconvex set-valued map. Since C is
vectorially closed, according to Theorem 2.1, we just have to prove that F−1(y− icr C)

is convex for all y ∈ Y. To this end, consider an arbitrary point y ∈ Y, and let
x, x′ ∈ F−1(y − icr C) and t ∈ ]0, 1[. By explicit C-quasiconvexity of F we have

y ∈ (F(x) + icr C) ∩ (
F(x′) + icr C

)

⊂ (F(x) + C) ∩ (
F(x′) + icr C

)

⊂ F((1 − t)x + tx′) + icr C,

hence (1 − t)x + tx′ ∈ F−1(y − icr C). Thus F−1(y − icr C) is convex. ��
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Remark 3.2 The assumption on the closeness of the ordering cone C is essential in
Proposition 3.4, even if F is single-valued. Indeed, consider for instance the function f
defined in Example 2.1. We have already seen that it is not C-quasiconvex. However,
f is explicitly C-quasiconvex, since for all x, x′ ∈ S and t ∈ ]0, 1[ we actually have
(f (x) + C) ∩ (

f (x′) + icr C
) = f ((1 − t)x + tx′) + icr C.

The following auxiliary result will be useful in proof of Proposition 3.5 below.

Lemma 3.1 Let A and B be two subsets of Y such that A + C = B + C. Then

A + icr C = B + icr C.

Proof By using (3) it can be easily shown that C+ icr C = icr C. Since A+C = B+C,
we infer A + icr C = A + C + icr C = B + C + icr C = B + icr C. ��
Proposition 3.5 Let F : S → 2Y and G : S → 2Y be two set-valued maps satisfying the
property that F(x) + C = G(x) + C for all x ∈ S. Then, F is C-quasiconvex (explicitly
C-quasiconvex, C-convex) if and only if G is C-quasiconvex (explicitly C-quasiconvex,
C-convex).

Proof For all x ∈ S we have F(x) + C = G(x) + C. By Lemma 3.1 it follows that
we also have F(x) + icr C = G(x) + icr C, for all x ∈ S. By definition of (explicit)
C-quasiconvexity we infer that F is (explicitly) C-quasiconvex if and only if G is
(explicitly) C-quasiconvex. On the other hand, we have epiC(F) = {(x, y) ∈ S × Y |
y ∈ F(x) + C} = {(x, y) ∈ S × Y | y ∈ G(x) + C} = epiC(G), which shows that F is
C-convex if and only if G is C-convex. ��
Remark 3.3 Following Rubinov (2000) we say that a subset A of Y is upward (with
respect to C) if A = A + C, which actually means that the free disposal property
in the sense of Debreu (1959) holds. By Proposition 3.5 it follows that the C-quas-
iconvexity (explicit C-quasiconvexity, C-convexity, respectively) of a set-valued map
F : S → 2Y reduces to the C-quasiconvexity (explicit C-quasiconvexity, C-convexity,
respectively) of a set-valued map with upward values, namely F + C, defined for all
x ∈ S by (F + C)(x) := F(x) + C.

Corollary 3.2 Let F : S → 2Y be a set-valued map which admits a selection f such that,
for each x ∈ S, f (x) is a smallest element of F(x). Then, F is C-quasiconvex (explicitly
C-quasiconvex, resp., C-convex) if and only if function f is C-quasiconvex (explicitly
C-quasiconvex, resp., C-convex).

Proof For all x ∈ S we have f (x) + C ⊂ F(x) + C ⊂ f (x) + C + C = f (x) + C, hence
f (x) + C = F(x) + C. The conclusion directly follows by Proposition 3.5. ��

We end this Section by showing that the notion of explicitly cone-quasiconvexity
is a natural extension of the classical notion of explicit quasiconvexity.

Theorem 3.1 A function f : S → R
n is explicitly R

n+-quasiconvex if and only if it is
componentwise explicitly quasiconvex.

Proof The conclusion being obvious for n = 1, we may suppose that n ≥ 2. Assume
that f = (f1, . . . , fn) is explicitly R

n+-quasiconvex. By Proposition 3.4, it follows that f
is R

n+-quasiconvex, which means, according to Remark 2.1, that all functions f1, . . . , fn
are quasiconvex in the usual sense. Suppose to the contrary that fi is not semistrictly



112 J Glob Optim (2007) 38:103–118

quasiconvex for some i ∈ {1, . . . , n}. Since fi is quasiconvex, we infer the existence of
x, x′ ∈ S and t ∈ ]0, 1[ satisfying the following condition:

fi(x′) < fi((1 − t)x + tx′) = fi(x). (6)

Since f is explicitly R
n+-quasiconvex, it satisfies property (4). Consider the point

y = (y1, . . . , yn) ∈ R
n, where yi := fi(x) and yj := max{fj(x), fj(x′)} + 1 for all

j ∈ {1, . . . , n} \ {i}. Then f (x) ≤ y and f (x′) < y, in view of (6). Since f is explicitly R
n+-

quasiconvex, we can deduce that f ((1 − t)x + tx′) < y, which yields fi((1 − t)x + tx′) <

yi = fi(x), contradicting (6).
Conversely suppose that f1, . . . , fn are explicitly quasiconvex in the usual sense.

Let y ∈ R, let x, x′ ∈ S be such that f (x) ≤ y and f (x′) < y, and let t ∈ ]0, 1[.
For any i ∈ {1, . . . , n} we distinguish two possible situations: if fi(x) = fi(x′), then
fi((1−t)x+tx′) ≤ max{fi(x), fi(x′)} = fi(x′) < yi, by quasiconvexity of fi; if fi(x) �= fi(x′),
then fi((1− t)x+ tx′) < max{fi(x), fi(x′)} ≤ yi, by semistrict quasiconvexity of fi. Hence,
in both cases, we have fi((1 − t)x + tx′) < yi. Thus f ((1 − t)x + tx′) < y. In view of
Remark 3.1, f is explicitly R

n+-quasiconvex. ��

4 Set-valued optimization problems

Throughout this Section, we will restrict our attention to the particular case where
Y = R

n is the n-dimensional Euclidean space with n ≥ 2, partially ordered by the
standard ordering cone C = R

n+. As usual, the coordinates of any vector y ∈ R
n with

respect to the canonical basis {e1, . . . , en} of R
n will be denoted by y1, . . . , yn. For any

subset Z of R
n we denote by

Min Z := {z ∈ Z | Z ∩ (z − R
n+) = {z}} = {z ∈ Z | � z′ ∈ Z : z′ ≤ z �= z′},

WMin Z := {z ∈ Z | Z ∩ (z − int R
n+) = ∅} = {z ∈ Z | � z′ ∈ Z : z′ < z}

the sets of efficient points, and weakly efficient points of Z, respectively. According to
Luc (1989), given a set-valued map F : S → 2R

n
, the efficient solutions and the weakly

efficient solutions of the set-valued optimization problem

(SVOP)

{
Minimize F(x) w.r.t. R

n+
subject to x ∈ S

are defined as the elements of the following sets, respectively:

Eff(S | F) := F−1(Min F(S)) and WEff(S | F) := F−1(WMin F(S)).

Note that classical multicriteria optimization problems can be treated in the same
framework, by considering objective maps with singleton values. The principal aim
of this Section is to extend some recent results of Benoist (2003) and Popovici (2005)
concerning the structure of efficient sets from explicitly quasiconvexity multicriteria
optimization to explicitly quasiconvex set-valued optimization. To this end we firstly
recall some basic definitions. A subset Z of R

n is called:

• K-radiant, where K is a cone of R
n, if

ray(z, z′) := z + R+(z′ − z) ⊂ Z for all z, z′ ∈ Z, z ≤K z′;

• simply shaded, if Z is closed, upward (i.e., Z = Z+R
n+), and its topological boundary

(which actually coincides with WMin Z) is R
n+-radiant.
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Remark 4.1 Every upward subset of R
n is R

n+-radiant, but its weakly efficient frontier
is not necessarily R

n+-radiant. For instance, the set Z := {e1, . . . , en} + R
n+ is upward,

but WMin Z is not R
n+-radiant. Indeed, for z := e1 and z′ := e1 + · · · + en, we have

z, z′ ∈ WMin Z and z ≤ z′, but ray(z, z′) �⊂ WMin Z.

Remark 4.2 As shown by Popovici (2005), if Z is an upward subset of R
n, then the

set WMin Z is R
n+-radiant if and only if it is R+{e1, . . . , en}-radiant.

We are now ready to state our main results concerning optimization problems of
type (SVOP) with explicitly quasiconvex objective set-valued maps. For notational
convenience we set In := {1, . . . , n}.
Theorem 4.1 Let F : S → 2R

n
be a set-valued map. Assume that for all (x, v), (x′, v′) ∈

gr F and y ∈ R
n with v ≤ y, v′ < y, the set-valued map F ◦ �x,x′ admits a componentwise

upper semicontinuous selection ϕ such that ϕ(0) ≤ v, ϕ(1) ≤ v′ and ϕ(t) < y for every
t ∈ ]0, 1[. Then WMin (F(S) + R

n+) is R
n+-radiant.

Proof Suppose to the contrary that WMin (F(S) + R
n+) is not R

n+-radiant. In view of
Remark 4.2 and taking into account that F(S) + R

n+ is upward, we infer the existence
of some i ∈ In for which WMin (F(S)+R

n+) is not R+ei-radiant. Consequently, we can
find some z, z′ ∈ WMin (F(S) + R

n+) and α ∈ R+ such that z′ ∈ z + R+ei and

y := z + α(z′ − z) /∈ WMin (F(S) + R
n+).

Since z′, y ∈ z + R+ei, we have zj = z′
j = yj for all j ∈ In \ {i}. It is easily seen that we

also have zi < z′
i < yi, since z, z′ ∈ WMin (F(S) + R

n+) and y /∈ WMin (F(S) + R
n+).

Given that z ∈ F(S) + R
n+, there exists v ∈ F(S) such that v ≤ z. On the other hand,

since y ∈ z + R+ei ⊂ F(S) + R
n+ and y /∈ WMin (F(S) + R

n+), there exist v′ ∈ F(S)

and c ∈ R
n+ such that v′ + c < y. Let x, x′ ∈ S be such that v ∈ F(x) and v′ ∈ F(x′),

i.e. (x, v), (x′, v′) ∈ gr F. Since v ≤ y and v′ < y, we infer the existence of a com-
ponentwise upper semicontinuous function ϕ = (ϕ1, . . . , ϕn): [0, 1] → R

n such that
ϕ(t) ∈ F ◦ �x,x′(t) for all t ∈ [0, 1], ϕ(0) ≤ v, ϕ(1) ≤ v′, and

ϕ(t) < y for all t ∈ ]0, 1[. (7)

Recalling that ϕ(0) ≤ v ≤ z and zi < z′
i, we have that ϕi(0) < z′

i. Thus, by upper
semicontinuity of ϕi, we can deduce that ϕi(s) < z′

i for a small enough s ∈ ]0, 1[.
By (7) and recalling that yj = z′

j for all j ∈ In \ {i}, we infer that ϕj(s) < z′
j for all

j ∈ In \ {i}. Hence ϕ(s) < z′. Since ϕ(s) ∈ F ◦ �x,x′(s) ∈ F(S) ⊂ F(S) + R
n+, it follows

that z′ /∈ WMin (F(S) + R
n+), contradicting the initial choice of z′. ��

Corollary 4.1 Let F : S → 2R
n

be a set-valued map satisfying the property that for all
(x, v), (x′, v′) ∈ gr F the set-valued map F ◦ �x,x′ admits a componentwise upper semi-
continuous explicitly quasiconvex selection ϕ such that ϕ(0) ≤ v and ϕ(1) ≤ v′. Then
WMin (F(S) + R

n+) is R
n+-radiant.

Proof The conclusion directly follows by Theorem 4.1, by an argument similar to that
used in the proof of Corollary 3.1. ��
Remark 4.3 Under the hypotheses of Theorem 4.1 (resp., Corollary 4.1), F is explicitly
R

n+-quasiconvex, according to Proposition 3.2 (resp., Corollary 3.1).
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Corollary 4.2 Let F : S → 2R
n

be an explicitly R
n+-quasiconvex set-valued map such

that a smallest element exists in each of its values. Assume that F is lower semicon-
tinuous along line segments, i.e., for all x, x′ ∈ S the set-valued map F ◦ �x,x′ is lower
semicontinuous. Then WMin (F(S) + R

n+) is R
n+-radiant.

Proof Let f = (f1, . . . , fn) : S → R
n be the function which assigns to each value

F(x) of F its smallest element f (x). Let (x, v), (x′, v′) ∈ gr F and consider the function
ϕ = (ϕ1, . . . , ϕn) : [0, 1] → R

n, defined for all t ∈ [0, 1] by

ϕ(t) := f ◦ �x,x′(t).

Obviously ϕ is a selection of the set-valued map F ◦ �x,x′ with ϕ(0) = f (x) ≤ v and
ϕ(1) = f (x′) ≤ v′. The set-valued map F being explicitly R

n+-quasiconvex, it follows
by Corollary 3.2 that f is explicitly R

n+-quasiconvex. Then f ◦ �x,x′ , i.e. ϕ, is explicitly
R

n+-quasiconvex, according to Proposition 3.2. Thus, in view of Corollary 4.1, in order
to prove that WMin (F(S) + R

n+) is R
n+-radiant, we just have to show that for each

i ∈ In the function ϕi is upper semicontinuous. To this end, by means of the projection
function pi : R × R

n → R defined for all t ∈ R and v ∈ R
n by pi(t, v) := vi, we associate

to F ◦ �x,x′ the marginal function µ : [0, 1] → R given by

µ(t) := inf{pi(t, v) | v ∈ F ◦ �x,x′(t)} for all t ∈ [0, 1].
Since for every t ∈ [0, 1] the point f ((1 − t)x + tx′) is a smallest element of the
set F ◦ �x,x′(t) = F((1 − t)x + tx′), it is easily seen that µ(t) = fi((1 − t)x + tx′) =
fi ◦ �x,x′(t). Hence µ = fi ◦ �x,x′ . Finally, recalling that the set-valued map F ◦ �x,x′
is lower semicontinuous and taking into account that pi is continuous, we infer by
the well-known Maximum Theorem (see, e.g., Theorem 1.4.16 in the monograph of
Aubin and Frankowska, 1990) that the marginal function µ, i.e. fi ◦ �x,x′ , is upper
semicontinuous. ��

We end our paper by presenting the announced applications of Theorem 4.1 to
the study of the Pareto reducibility of problem (SVOP) and the contractibility of its
efficient outcome set.

For every nonempty subset I of In, consider the convex cone

CI := {y ∈ R
n | yi ≥ 0, ∀ i ∈ I}.

According to Luc (1989), the set of efficient points of any subset Z of R
n with respect

to CI is defined by

MinI Z := {z ∈ Z | Z ∩ (z − CI) ⊂ z + CI}
= {z ∈ Z | ∀ z′ ∈ Z : (z′

i ≤ zi, ∀ i ∈ I) ⇒ (z′
i = zi, ∀ i ∈ I)}.

Then, the set EffI(S | F) := F−1(MinI F(S)) represents the set of efficient solutions
of the following set-valued optimization problem associated to (SVOP):

(SVOPI)

{
Minimize F(x) w.r.t. CI
subject to x ∈ S.

Obviously, (SVOPIn ) actually means (SVOP), hence EffIn(S | F) = Eff(S | F). Fol-
lowing Popovici (2005), we will say that problem (SVOP) is Pareto reducible if the
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set of its weakly efficient solutions can be represented as the union of the efficient
solutions of all associated problems of type (SVOPI), i.e.

WEff(S | F) =
⋃

∅�=I⊂In

EffI(S | F).

Proposition 4.1 Under the hypotheses of Theorem 4.1 the problem (SVOP) is Pareto
reducible.

Proof According to the main theorem of Popovici (2005), the weakly efficient frontier
WMin Z of any upward set Z ⊂ R

n is R
n+-radiant if and only if

WMin Z =
⋃

∅�=I⊂In

MinI Z. (8)

Obviously, the set F(S) + R
n+ is upward. Moreover, the set WMin (F(S) + R

n+) is
R

n+-radiant, by virtue of Theorem 4.1. We infer by (8) applied for Z = F(S) +
R

n+ that WMin (F(S) + R
n+) = ⋃

∅�=I⊂In
MinI (F(S) + R

n+). Taking into account that
MinIF(S) = F(S) ∩ MinI(F(S) + R

n+) for each nonempty I ⊂ In, and WMin F(S) =
F(S) ∩ WMin (F(S) + R

n+), it follows that

WMin F(S) = F(S) ∩ WMin (F(S) + R
n+)

= F(S) ∩
( ⋃

∅�=I⊂In

MinI (F(S) + R
n+)

)

=
⋃

∅�=I⊂In

(F(S) ∩ MinI (F(S) + R
n+))

=
⋃

∅�=I⊂In

MinI F(S).

Hence we also have

WEff S = F−1(WMin F(S))

= F−1
( ⋃

∅�=I⊂In

MinI F(S)

)

=
⋃

∅�=I⊂In

F−1(MinI F(S))

=
⋃

∅�=I⊂In

EffIS.

Thus problem (SVOP) is Pareto reducible. ��
Let us now turn our attention on the contractibility of efficient sets. Recall that a

subset A of R
n is said to be strongly contractible if there exists a point a ∈ A and a con-

tinuous function hA: [0, 1]×A → A such that hA(0, y) = y and hA(1, y) = a = hA(t, a)

for all y ∈ A and t ∈ [0, 1]. It is well known that every (strongly) contractible set is
arcwise connected, hence connected. A well-known theorem of Peleg (1972) states
that the efficient frontier of any closed convex nonempty set in R

n having compact
sections with respect to R

n+ is contractible. After the publication of this result the lit-
erature devoted to the connectedness of efficient sets in both convex and nonconvex
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vector optimization problems has quickly grown. However, only a few results have
been obtained in what concerns arcwise connectedness or contractibility of efficient
sets in nonconvex vector optimization. A valuable extension of the Peleg’s Theorem
has been recently obtained by Benoist (2003), which asserts that the efficient frontier
of any nonempty simply shaded set in R

n having compact sections with respect to R
n+

is strong contractible. We end our paper by showing how this result can be used in
explicitly quasiconvex set-valued optimization.

The following result extends Lemma 3.3 in the paper of Huy and Yen (2005).

Proposition 4.2 Assume that S is a nonempty subset of a real linear topological Haus-
dorff space X and let F : S → 2R

n
be an upper semicontinuous set-valued map with non-

empty compact values, such that for every v ∈ F(S)+R
n+ the lower level set F−1(v−R

n+)

is compact. Then the following assertions hold:

1◦ The set F(S) + R
n+ is closed.

2◦ For every v ∈ R
n, the lower section �(v) := (F(S) + R

n+) ∩ (v − R
n+) is compact.

Proof 1◦ Let (zk)k∈N be a sequence of points in F(S) + R
n+, which converges to a

point z ∈ R
n. We have to prove that z ∈ F(S) + R

n+.
For each k ∈ N there exist xk ∈ S, yk ∈ F(xk) and ck ∈ R

n+ such that zk = yk + ck.
The sequence (zk)k∈N being convergent, it is bounded, hence there exists v ∈ R

n

such that zk ∈ v − R
n+ for all k ∈ N. It follows that, for every k ∈ N we have

v ∈ zk +R
n+ = yk +ck +R

n+ ⊂ F(xk)+R
n+ +R

n+ = F(xk)+R
n+, hence xk ∈ F−1(v−R

n+)

and yk ∈ F(xk) ⊂ F(F−1(v−R
n+)). By hypothesis, the level set F−1(v−R

n+) is compact,
since v ∈ F(S) + R

n+ (indeed, v ∈ z1 + R
n+ ⊂ F(S) + R

n+ + R
n+ = F(S) + R

n+). By a
classical argument in Set-Valued Analysis (see, e.g., Theorem 2.1 in the early paper of
Hiriart-Urruty (1985) or Proposition 2.5.8 in the monograph of Göpfert et al. (2003), it
follows that F(F−1(v−R

n+)) is compact, as the image of a compact set under an upper
semicontinuous map with nonempty compact values. Thus, passing to a subsequence
if necessary, we can assume without loss of generality that (yk)k∈N converges to a point
y ∈ F(F−1(v − R

n+)). Recalling that (zk)k∈N converges to z, and zk = yk + ck for all
k ∈ N, we infer that (ck)k∈N converges to z − y. Since ck ∈ R

n+ for all k ∈ N, it follows
that z − y ∈ cl R

n+ = R
n+, hence z ∈ y + R

n+ ⊂ F(F−1(v − R
n+)) + R

n+ ⊂ F(S) + R
n+.

2◦ Let v ∈ R
n. Since �(v) = ∅ (hence compact) if v /∈ F(S) + R

n+, we can assume
in what follows that v ∈ F(S)+ R

n+. Since v − R
n+ is closed, it follows by 1◦ that �(v) is

also closed. Obviously, �(v) is upper bounded by v, i.e. �(v) ⊂ v − R
n+. Thus, in order

to prove that �(v) is compact, we just have to show that �(v) is lower bounded.
By hypothesis, F−1(v − R

n+) is compact, hence F(F−1(v − R
n+)) is also compact,

as the image of a compact set under an upper semicontinuous map with nonempty
compact values. Since compact sets in R

n are lower bounded, we infer the existence
of w ∈ R

n such that F(F−1(v − R
n+)) ⊂ w + R

n+. We will end the proof by show-
ing that �(v) ⊂ w + R

n+. Indeed, let u ∈ �(v). By definition of �(v), there exist
y ∈ F(S) and c, c′ ∈ R

n+ such that u = y + c = v − c′, i.e. u − c = y = v − c − c′.
Taking into account that y ∈ F(S) and v − c − c′ ∈ v − R

n+ − R
n+ = v − R

n+, it follows
that u − c ∈ F(S) ∩ (v − R

n+), which means that u − c ∈ F(x) ∩ (v − R
n+) for some

x ∈ S. Thus F(x) ∩ (v − R
n+) �= ∅ and, consequently, x ∈ F−1(v − R

n+). We deduce that
u−c ∈ F(x) ⊂ F(F−1(v−R

n+)) ⊂ w+R
n+, hence u ∈ w+c+R

n+ ⊂ w+R
n++R

n+ = w+R
n+.

Since u was arbitrarily chosen in �(v), we infer that �(v) ⊂ w + R
n+. ��
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Corollary 4.3 Let S be a nonempty convex subset of a real linear topological Hausdorff
space X and let F : S → 2R

n
be an upper semicontinuous set-valued map with nonempty

compact values, such that for every v ∈ F(S) + R
n+ the lower level set F−1(v − R

n+) is
compact. Assume, in addition, that F satisfies the hypotheses of Theorem 4.1. Then
Min F(S) is strongly contractible.

Proof Obviously F(S) + R
n+ is a an upward set. Actually, it is simply shaded, since

it is closed and WMin (F(S) + R
n+) is R

n+-radiant, as shown by Proposition 4.2(1◦)
and Theorem 4.1. Moreover, according to Proposition 4.2(2◦), the lower sections of
F(S) + R

n+ are compact. By Theorem 4.2 in the paper of Benoist (2003) it follows that
Min (F(S) + R

n+), i.e., Min F(S), is strongly contractible. ��
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